**PHYSICS**

**General**

Units and dimensions, dimensional analysis;
least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm’s law
using voltmeter and
ammeter, and specific resistance of the material of a wire
using meter bridge
and post office box.

**Mechanics**

Kinematics in one and two dimensions (Cartesian coordinates only),
projectiles; Uniform circular motion; Relative velocity.

Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and
power; Conservation of linear momentum and mechanical energy.

Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia
of uniform bodies with simple geometrical shapes;
Angular
momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.

Linear and angular simple harmonic motions. Hooke’s law, Young’s modulus.

Pressure in
a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal
velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its
applications.

Wave motion (plane waves only), longitudinal and transverse waves,
superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).

**Thermal physics**

Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat
conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics
and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.

**Electricity and magnetism**

Coulomb’s law; Electric field and potential; Electrical potential energy of a
system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy
stored in a capacitor.

Electric current; Ohm’s law; Series and parallel arrangements of resistances
and cells; Kirchhoff’s laws and simple applications; Heating effect of current.

Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual
inductance; RC, LR and LC circuits with d.c. and a.c. sources.

**Optics**

Rectilinear propagation of light; Reflection and refraction at plane and
spherical surfaces; Total internal reflection; Deviation and dispersion
of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.

**Modern physics**

Atomic nucleus; Î±, Î² and Î³ radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and
continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.

**JEE Syllabus (Mains)**

**Previous Question Papers 2015**

**Question Papers JEE(Main)-2014 Paper I**

## 0 comments:

## Post a Comment

Thank you for leaving your comment. Your comment will be published after moderation by the administrator.